Journal of Organometallic Chemistry, 84 (1975) 247–253 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DERIVATIVES OF CYCLOOCTATETRAENECYCLOPENTADIENYL-TITANIUM CONTAINING SUBSTITUENTS IN THE FIVE-MEMBERED RING

M.E.E. VELDMAN and H.O. VAN OVEN

Laboratorium voor Anorganische Chemie, Rijksuniversiteit, Zernikelaan, Groningen (The Netherlands)

(Received July 15th, 1974)

Summary

The syntheses of some substituted cyclooctatetraenecyclopentadienyltitanium compounds are described, viz: $(h^8-C_8H_8)(h^5-R)$ Ti with $R = C_5H_4CH_3$, $C_5H_4C(CH_3)_3$, $C_5H_4Si(CH_3)_3$, indenyl (= Ind) and fluorenyl (= Flu). The compounds have been prepared by reaction of $[(h^8-C_8H_5)TiCl\cdotTHF]_2$ with RNa in ether solution. The paramagnetic compounds are thermally stable to ca. 350°, but they are sensitive to air and water. The IR spectra and dipole moments of the compounds are given. The mass spectra of the complexes $(h^8-C_8H_8)$ - $(h^5-C_5H_5)Ti$, $(h^8-C_8H_8)(h^5-Ind)Ti$ and $(h^8-C_8H_8)(h^5-Flu)Ti$ indicate weakening of the Ti— h^5R bond-strength in this sequence.

Introduction

Our studies on the preparation of titanium complexes containing a h^8 -C₃H₃ ligand led to the isolation of the compounds $(h^8$ -C_bH₃) $(h^5$ -C₅H₅)Ti [1, 2], $(h^8$ -C₈H₈) $(h^4$ -C₄Ph₄)Ti [3], $(h^8$ -C₈H₈) $(h^3$ -allyl)Ti [4], [$(h^8$ -C₈H₈)TiCl·THF]_2 [5] and [$(h^8$ -C₈H₈)TiCl]_4 [5]. The present paper describes the synthesis and some properties of five-ring substituted complexes $(h^8$ -C₈H₈) $(h^5$ -R)Ti with R = C₅H₄CH₃, C₅H₄C(CH₃)₃, C₅H₄Si(CH₃)₃, indenyl and fluorenyl.

Experimental

All experiments were carried out under purified nitrogen. Solvents were purified by conventional methods; before use they were freed from oxygen by repeated degassing and saturating with nitrogen. Commercial TiCl₃ and cyclooctatetraene were used without purification. Elementary analyses of C and H were carried out at the Microanalytical Department of this University under the supervision of Mr. W.M. Hazenberg; Ti was analyzed in our laboratory under the supervision of Mr. A.F. Hamminga.

R	Analysis found (caled.) (%)			Yield	Dec. temp
	С	н	Ti	(70)	()
с ₅ н ₄ сн ₃	72.46	6.56	20.91	60	355
(green)	72.60	6.71	20.90		
	(72.73)	(6.48)	(20.74)		
C5H4C(CH3)3	74.88	7.93	17.63	61	364
(green)	75.00	7.98	17.43		
	(74.72)	(7.75)	(17.53)		
C5H4S1(CH3)3	66.08	7.23	16.56	63	360
(green)	66.13	7.27	16.47		
	(66.42)	(7.32)	(16.56)		
Indenyl	76.26	5.87	17.61	77	367
(green)	76.58	5.82	17.64		
	(76.41)	(5.66)	(17.93)		
Fluorenyi	79.51	5.35	14.96	63	336
(red)	79.70	5.57	14.97		
	(79.50)	(5.40)	(15.10)		

ANALYTICAL DATA, YIELDS AND DECOMPOSITION TEMPERATURES FOR THE COMPLEXES $(\hbar^8 \cdot C_8 H_8)(\hbar^5 \cdot R)$ Ti

Preparation of (h^s-C₈H₈)(h⁵-R)Ti

The compounds were prepared by reaction of $[(h^8-C_8H_8)TiCl\cdotTHF]_2$ with RNa (RLi for the fluorenyl compound) in ether solution at room temperature.

To a well-stirred suspension of $[(h^{s}-C_{s}H_{b})TiCl\cdotTHF]_{2}$ in ether one equivalent of RNa was added. The reaction mixture was stirred for 3 h. The solvent was removed under reduced pressure. The compounds were isolated by crystallization from pentane ($R = C_{5}H_{4}C(CH_{3})_{3}$) or toluene (R = Ind, Flu) or by sublimation after extraction with pentane ($R = C_{5}H_{4}CH_{3}, C_{5}H_{4}Si(CH_{3})_{3}$). The yields, analytical data and decomposition temperatures are summarized in Table 1. Dipole moment measurements were performed at 20° ± 0.1°C in benzene solution with a WTW dipole meter (type DM 01). Dipole moment data were calculated using the formula given by Guggenheim [6]. The dipole moments given in Table 2 are not corrected for the polarizabilities of the compounds; due to

TABLE 2

DIPOLE MOMENTS (IN	D) AND MAGNETIC SUSCEPTIBILITI	ES (IN BM) FOR THE COMPLEXES
(h ⁸ -C ₈ H ₈)(h ⁵ -R)Tı		• • • • • • • • • • • • • • • • • • • •

R	Dipole moment	^µ eff		
C;H;	1.2 ± 0.1	1.60		
C5H4C(CH3)3	1.6			
C ₅ H ₄ Si(CH ₃) ₃	1.4	1.65		
Indenyi	1.4	1.63		
Fluorenyl	1.4	1.60	•	

TABLE 1

TABLE 3 MASS SPECTRUM OF $(h^8 - C_8 H_8)(h^5 - C_5 H_5)$ Ti

m/e	Rel. int.	Ion	m/e	Rel. int.	ion
217	100	C13H13T1 ⁺	78	49	С ₆ Н ₀ ⁺
191	17	C11 H11 Ti ⁺	73	14	C ₂ HTi ⁺
150	11	C8H6T1 ⁺	66	17	С ₅ н _е +
113	74	C; H; T) ⁺	65	14	С;Н;+
108.5	11	C13H13T1++	52	14	C ₄ H ₄ ⁺ , C ₈ H ₄ , ⁺⁺
104	91	$C_8H_8^+$	51	23	C1H3+
95.5	20	C11H11T1++	50	14	$C_4 H_2^+$
91	11	C7H7 ⁺	48	14	Ti ⁺
87	20	$C_3H_3T_1^+$	39	17	C3H3+
86	14	C3H2T1 ⁺			

Metastable peaks:

168.1	С _{1 3} Н _{1 3} ті ⁺	C₂H₂ →	С	÷		
66.9	C11H11Ti ⁺	C ₆ H ₆	С ₅ Н ₅ Т1 ⁺ ,	C₅H₅T℩ ⁺	-C₂H₂ →	C;HiTi+
58.8	C13H13Ti ⁺	-C ₈ H ₈	C;H;Tı⁺			

TABLE 4

MASS SPECTRUM OF (h⁸·C₈H₈)(h⁵·C₅H₄CH₃)Ti

m/e	Rel. int.	lon	m/e	Rel. int.	lon
231	100	C14H15T1 ⁺	113	26	C ₅ H ₅ Ti ⁺
229	37	C14H13T1 ⁺	104	14	С ₈ н ₆ +
217	21	$C_{13}H_{13}T_{1}^{+}$	103	10	$C_{b}H_{7}^{+}$
215	10	C13H11T1 ⁺	102.5	12	C12H13T1++
205	9	C12H13T1+	87	7	Сзнзті⁺
203	8	$C_{12}H_{11}T_{1}^{+}$	79	11	C _b H ₇ ⁺
191	7	$C_{11}H_{11}T_{1}^{+}$	78	15	C _n H _p ⁺
150	13	$C_8 H_b T_1^+$	77	9	C _b H ₅ ⁺
128	7	С ₆ Н ₈ Т1 ⁺	73	10	C2HT1 ⁺
127	51	$C_6 H_7 T_1^+$	48	12	T1 ⁺
126	21	C ₆ H ₆ T1 ⁺	39	7	С3Н3+

Metastable peaks:

202 0	C14H15T1 ⁺	-CH ₃	С ₁₃ н ₁₂ т ⁺
181.9	C14H15T1 ⁺	-C ₂ H ₂	C ₁₂ H ₁₃ Ti ⁺
168.1	C13H13T1 ⁺	$-c_2H_2$	c _{ıı} ң _{ıı} т, ⁺
157.9	C14H15T1 ⁺	$\xrightarrow{-C_3H_4}$	C ₁₁ H ₁₁ Ti ⁺
66.9	С ₁₁ Н ₁₁ Т1 ⁺	−c ₆ H ₆	$C_5H_5T_7^+; C_5H_5T_7^+ \xrightarrow{-C_2H_2} C_3H_3T_7^+$
58.8	C ₁₃ H ₁₃ T1 ⁺		C₅H₅™⁺

the strong absorption of the compounds in the visible range it is not possible to derive their polarizabilities from refractive indices [7].

The magnetic susceptibilities of some of the compounds between 90 K and 300 K were determined by the Faraday method. The susceptibilities given in Table 2 are corrected for diamagnetism; they correspond to one unpaired electron per molecule (calculated for spin only: $\mu_{eff} = 1.73$ BM).

The IR spectra of the compounds (Fig. 1) were recorded using an EPI-G spectrophotometer. The samples were examined as mulls in hexachlorobutadiene or Voltalef 3 S oil (4000-1200 cm⁻¹) and Nujol (1200-400 cm⁻¹) between KBr discs.

The mass spectra (Tables 3-8) were run on an AEI MS 9 mass spectrometer. Operating conditions: energy 70 eV; resolution 1000; accelerating voltage 8 kV: inlet temperature ca. 130°. The samples were introduced directly into the ion source using a metal probe. No ions were observed with m/e larger than the parent ion. The groups of peaks assigned to Ti containing ions showed the normal isotopic distribution of titanium; only peaks corresponding to ⁴⁸Ti are

4000 3600 3200 2800 2400 2000 1600 1200 1100 1000 900 800 700 600 500 400 cm 1

Fig. 1. Infrared spectra of. (a) $C_8H_8T_1C_5H_5$, (b) $C_8H_8T_1C_5H_4CH_3$, (c) $C_8H_8T_1C_5H_4C(CH_3)_3$, (d) $C_8H_8T_1C_5H_4Si(CH_3)_3$, (e) $C_8H_8T_1Ind$ and (f) $C_8H_8T_1F_1u$. Spectra (c) and (d) were recorded in Voltale' 3 S oil (4000-1300 cm⁻¹)

m/c	Rel. int.	lon	m/e	Rel. int.	lon
273	100	C17H21T1 ⁺	137	2	С ₇ Н ₅ Ті ⁺
257	29	C16H17Ti ⁺	129	3	C ₀ HaT1 ⁺ : C16H18T1 ⁺⁺
215	5	C13H11T1 ⁺	115	5	CyH7 ⁺
153	6	C ₈ H ₉ T1 ⁺	114	6	C9H6 ⁺
152	7	C ₈ H ₈ T ₁ ⁺	113	3	C ₅ H ₃ Ti ⁺
151	5	C ₈ H7Tነ ⁺	104	6	C ₃ H ₈
150	8	C ₈ H _b Ti ⁺	78	4	C, H, ⁺
138	4	$C_7 H_0 Th^+$			
Metast	able peak:				
243.8	C ₁₇ H ₂₁ Tı ⁺	−CH3 →→ C1₀H18T1 ⁺			

TABLE 5 MASS SPECTRUM OF $(h^8 \cdot C_8 H_8)(h^5 \cdot C_5 H_1 C(CH_3)_3)T_1$

listed in the Tables. The relative intensities are uncorrected. Metastable peaks observed in the spectra are included in the Tables.

Results and discussion

The reaction of $[(h^8 \cdot C_8 H_8)TiCl \cdot THF]_2$ with RNa (R = C₅H₅, C₅H₄CH₃, C₅H₄C(CH₃)₃, C₅H₄Si(CH₃)₃, indenyl or fluorenyl) in ether gives the complexes $(h^8 \cdot C_8 H_8)(h^5 \cdot R)Ti$. The compounds are thermally stable. Differential thermal analysis (heating rate 4°/min) (Table 1), shows that the compounds decompose at ca. 350°. The complexes are sensitive to air and water.

The mass spectra of the compounds $(h^8-C_8H_8)(h^5-C_5H_5)$ Ti, $(h^5-C_8H_8)(h^5-$ Ind)Ti and $(h^8-C_8H_8)(h^5-$ Flu)Ti show, that the ratio $I(C_8H_8T^*)/I(h^5-$ RTi $^*)$ increases in the order given. This indicates that the strength of the bond between titanium and the pentahapto ligand decreases in the same order, in agreement with data given

m/e	Rel. int.	lon	m/e	Rel. int.	lon
289	100	C ₁₆ H ₂₁ S\T1 ⁺	150	10	C8H6T1 ⁺
215	14	C13H11T1 ⁺	140	7	C. H. SITI
185	4	C ₈ H ₁₃ SiTi ⁺	126	6	С _о н ₆ ті ⁺
183	12	C ₈ H ₁₁ SiTi ⁺	124	4	C _n H _J T ₁ ⁺
181	11	C ₈ H9S1T1 ⁺	113	14	$C_{5}H_{5}T_{1}^{+}$
168	8	C7H8SiTi ⁺	104	6	C8 H5+
165	8	$C_7 H_5 S_1 T_1^+$	78	11	C., H_6+
153	14	С ₈ Н ₉ т1 ⁺	73	8	C 1 HoSi ⁺
152	7	С _б Н ₈ ті ⁺	48	8	Th ⁺

TABLE 6 MASS SPECTRUM OF $(h^8 \cdot C_5 H_8)(h^5 \cdot C_5 H_4 S \cdot (CH_3)_3) T_1$

	-				
m/e	Rel. int.	lon	m/e	Rel. int.	Ion
267	100	C ₁₇ H ₁₅ Ti ⁺	116	50	C9H8 ⁺
241	5	CI5HI3Ti ⁺	115	41	$C_{ij}H_7^+$
163	54	$C_9 H_7 Tr^+$	113	12	C;H;Ti ⁺
161	21	C9H5Ti ⁺	104	5	С ₈ н ₈ +
152	9	C ₈ H ₈ Ti ⁺	91	16	C7H7+
150	16	$C_8H_6T_1^+$	48	5	T1 ⁺
137	14	С ₇ Н ₅ Т1 ⁺			
Metasta	able peaks:				
217.5	C ₁₇ H ₁₅ Ti ⁺ – C	$\xrightarrow{2} H_2 \\ \longrightarrow C_{15} H_{13} T_1^+$			
115.1	С9Н7Т1 ⁺ —С	$2 H_2 \rightarrow C_7 H_5 Ti^+$			

TABLE 7 MASS SPECTRUM OF (h⁸-C₈H₈)(h⁵-indenvl)Ti

by King [8] and Samuel [9]. The IR spectra of the complexes give evidence for the presence of a h^8 -C₈H₈ ligand in the molecules; the absorption bands of the h^3 -C₈H₈ group are observed at the usual wave numbers [1-5]. The other absorptions are due to the substituted five-membered ring. The influence of the substituents on the frequencies of the h^8 -C₈H₈ ligand are very small. The magnetic measurements indicate that the complexes have one unpaired electron per molecule. This is in agreement with the presence of a h^8 -C₈H₈ and a h^5 -R ligand in the molecule of $(h^8$ -C₈H₈) $(h^5$ -R)Ti giving the titanium atom a 17-electron configuration.

TABLE 8

MASS SPECTRUM	OF (h ⁸	$-C_8H_8$)(h^3	'-Iluorenyl)Ti
---------------	--------------------	--------------------	----------------

m/e	Rel. int.	Ion	m/e	Rel. wt.	lon
317	100	C ₂₁ H ₁₇ T ¹⁺	124	3	C₀H₄T1 ⁺
213	14	C13H9Ti ⁺	113	8	C5H5Ti ⁺
211	11	C13H7Ti ⁺	104	18	C8H8+
166	33	C13H10 ⁺	103	10	C8H7+
165	34	C13H9 ⁺	91	5	$C_7 H_7^+$
158.5	5	$C_{21}H_{17}Ti^{++}$	82.5	6	C13H9++
152	27	C8H8T1 ⁺	78	10	C6H6+
150	13	C8H6T1 ⁺	48	3	Ti ⁺
126	4				

Metastable peak:

267.1 $C_{21}H_{17}T_1^+ \xrightarrow{-C_2H_2} C_{19}H_{15}T_1^+$

Acknowledgements

The authors are much indebted to Prof. Dr. F. Jellinek and Dr. H.J. de Liefde Meijer for their stimulating interest and to Mr. A. Kiewiet for recording the mass spectra. This investigation has been supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

- 1 H.O. van Oven and H.J. de Liefde Meijer, J. Organometal. Chem., 19 (1969) 373.
- 2 P.A. Kroon and R.B. Helmholdt, J. Organometal, Chem., 25 (1970) 451.
- 3 H.O. van Oven and H.J. de Liefde Meijer, J. Organometal. Chem., 55 (1973) 309.
- 4 H.K. Hofstee, H.O. van Oven and H.J. de Luefde Meyer, J. Organometal. Chem., 42 (1972) 405.
- 5 H.R. van der Wal, to be published.
- 6 E.A. Guggenheim, Trans. Faraday Soc., 45 (1949) 714; 47 (1951) 573.
- 7 K.B. Everard, R.A.W. Hill and L.E. Sutton, Trans. Faraday Soc., 46 (1950) 417.
- 8 R.B. King and M.B. Bisnette, Inorg. Chem., 3 (1964) 796.
- 9 E. Samuel, Bull. Soc. Chim. Fr., 11 (1966) 3548.